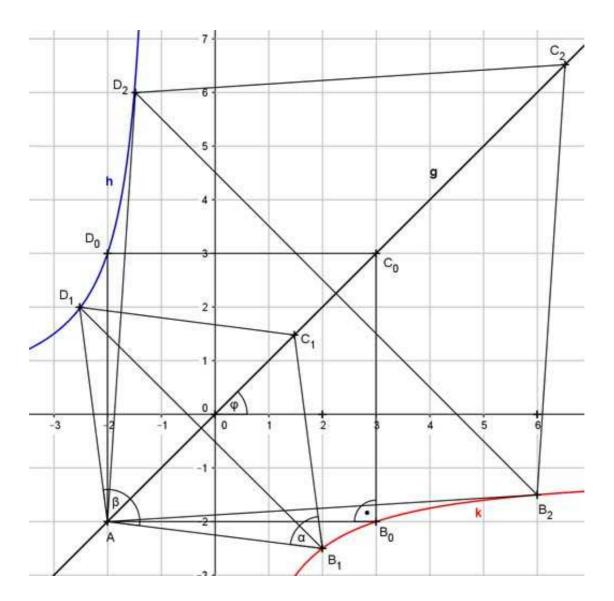
Abschlussprüfung 2007


Prüfungsdauer:

1000000	Ingsdauer: Minuten	Abschlussprüfung 2007 an den Realschulen in Bayern				R4/R6	
Math	ematik I		Haupttern	nin		Aufgabe	B 2
B 2.0	31	$-3x^{-1}-1$) lieger $G = \mathbb{R}^+ \times \mathbb{R}$). Di	auf dem	Hyperbelast	k mit der	Gleichung	
B 2.1 Zeichnen Sie den Hyperbelast k für $x>0$ sowie die Rauten $AB_1C_1D_1$ und $AB_2C_2D_2$ für $x=6$ in ein Koordinatensystem.							
	Für die Zeichmu	ng: Längeneir	heit 1 cm;	$-4 \le x \le 8$; -8	≦ y ≦ 7		3 P
B 2.2	Bestimmen Sie durch Rechnung die Definitionsmenge für die Abszissen x der Punkte B _n , sodass Rauten AB _n C _n D _n entstehen.						3 P
B 2.3	Berechnen Sie die Innenwinkelmaße der Raute $AB_1C_1D_1$. (Auf zwei Stellen nach dem Komma runden.)						3 P
B 2.4	Ermitteln Sie rechnerisch die Koordinaten der Punkte D_n in Abhängigkeit von der Abszisse x der Punkte B_n . Bestimmen Sie sodann die Gleichung des Trägergraphen h der Eckpunkte D_n . [Teilergebnis: $D_n(-3x^{-1}-1 x)$]						4 P
B 2.5	Unter den Raute	n AB _n C _n D _n gibt	es ein Quad	rat AB ₀ C ₀ D ₀ .			

Zeichnen Sie das Quadrat AB₀C₀D₀ in das Koordinatensystem zu 2.1 ein. Berechnen Sie sodann die Koordinaten der Eckpunkte Bo, Co und Do.

4 P

2.0, 2.1, 2.5

2.2

Rauten entstehen dann, wenn AB nicht senkrecht auf g steht.

Steigung ms der Senkrechten auf g:

 m_S und die Koordinaten von A in eine Gleichung der Form y = mx + b eingesetzt:

$$-2 = -1 * (-2) + b \mid -2$$

$$b = -4$$

$$y_S = -x - 4$$

Schnittpunkt von ys mit k:

$$-x^{2}-3x=-3|*(-1)$$

$$x^2 + 3x = 3 \mid -3$$

$$x^2 + 3x - 3 = 0$$

p, q - Formel:

$$p = 3, q = -3$$

$$x_{1,2} = \frac{-3}{2} \pm \sqrt{\left(\frac{-3}{2}\right)^2 + 3}$$

$$x_{1,2} = -1,5 \pm \sqrt{5,25}$$

$$x_{1,2} = -1,5 \pm 2,29$$

$$x_1 = 0.79$$
 oder $(x_2 = -3.79 < 0)$

x > 0.79

2.3

$$B_1$$
 hat die Koordinaten (2| - --- - 1 = - 2,5) = (2| - 2,5)

$$\overrightarrow{AB_1} = \overrightarrow{OB_1} - \overrightarrow{OA} = \begin{bmatrix} 2 \\ -2.5 \end{bmatrix} - \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ -0.5 \end{bmatrix}$$

Länge von AB:

$$AB_1^2 = 4^2 + (-0.5)^2 = 16.25 \mid v$$

$$AB_1 = 4,03 LE = BC -->$$

Die x-Koordinate von $\overrightarrow{B_1C_1}$ entspricht der y-Koordinate von $\overrightarrow{AB_1}$ und ist gleich - 0,5.

Die y-Koordinate von $\overrightarrow{B_1C_1}$ entspricht der x-Koordinate von $\overrightarrow{AB_1}$ und ist gleich 4.

$$\overrightarrow{B_1C_1} = \begin{bmatrix} -0,5\\4 \end{bmatrix}$$

$$\overrightarrow{OC_1} = \overrightarrow{OB_1} + \overrightarrow{B_1C_1} = \begin{bmatrix} 2 \\ -2.5 \end{bmatrix} + \begin{bmatrix} -0.5 \\ 4 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix}$$

$$\overrightarrow{AC_1} = \overrightarrow{OC_1} - \overrightarrow{OA} = \begin{bmatrix} 1,5 \\ 1,5 \end{bmatrix} - \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 3,5 \\ 3,5 \end{bmatrix}$$

Länge von AC₁:

$$AC_1^2 = 3.5^2 + 3.5^2 = 24.5 \mid v$$

$$AC_1 = 4,95 LE$$

Kosinussatz im Dreieck AB₁C₁:

$$AC_1^2 = AB_1^2 + B_1C_1^2 - 2 * AB * B_1C_1 * \cos \alpha$$

$$24,5 = 16,25 + 16,25 - 2 * 4,03 * 4,03 * \cos a$$

$$24,5 = 32,5 - 32,5 * \cos \alpha | - 32,5$$

$$-8 = -32,5 * \cos a | : (-32,5)$$

$$\cos a = 0.2462 --> a = 75.75^{\circ} \text{ oder } (a = 180^{\circ} - 75.75^{\circ} = 104.25^{\circ})$$

$$2 * \beta = 360^{\circ} - 2 * \alpha = 360^{\circ} - 2 * 75,75^{\circ} = 208,5^{\circ} | :2$$

$$\beta = 104,25^{\circ}$$

2.4

Die Steigung von y = x ist = 1 --> tan ϕ = 1 --> ϕ = 45° --> 2ϕ = 90°

D entsteht durch Achsenspiegelung von B an y = x.

$$\overrightarrow{OD} = \begin{bmatrix} \cos 2\varphi & \sin 2\varphi \\ \sin 2\varphi & -\cos 2\varphi \end{bmatrix} * \begin{bmatrix} x \\ -\frac{3}{x}-1 \end{bmatrix} = \begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ \sin 90^{\circ} & -\cos 90^{\circ} \end{bmatrix} * \begin{bmatrix} x \\ -\frac{3}{x}-1 \end{bmatrix}$$

$$\overrightarrow{\mathsf{OD}} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} * \begin{bmatrix} \mathsf{X} \\ -\frac{3}{\mathsf{x}} - 1 \end{bmatrix} = \begin{bmatrix} -\frac{3}{\mathsf{x}} - 1 \\ \mathsf{x} \end{bmatrix}$$

Die x'-Koordinate des Trägergraphen h entspricht der x-Koordinate von D.

$$x * (x + 1) = -3 | :(x' + 1)$$

In die y-Koordinate von D eingesetzt-- > h:

2.5

Ein Quadrat entsteht dann, wenn AB_0 parallel zu x-Achse verläuft.

 B_0 hat dann die gleiche y-Koordinate wie A, die ist = - 2. Schnittpunkt mit k.

$$-x = 3 | *(-1)$$

$$x = 3$$

$$B_0(3|-2)$$

$$D_0(-\frac{3}{---} - 1 = -2|3) = (-2|3)$$

C hat die gleiche x-Koordinate wie B, die ist = 3. In y = x eingesetzt --> y = 3

 $C_0(3|3)$