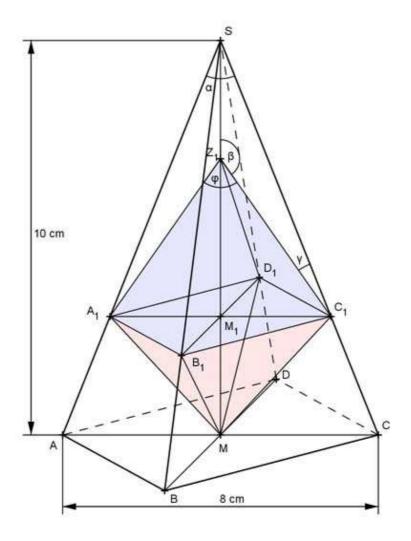
Prüfungsdauer: 150 Minuten


Abschlussprüfung 2014 an den Realschulen in Bayern

Mathematik I

	mauremaux i	
A	Ifgabe B 2 Nachtermin	
B 2.0	Das Quadrat ABCD ist die Grundfläche der Pyramide ABCDS, deren Spitze S senkrecht über dem Diagonalenschnittpunkt M des Quadrats ABCD liegt. Es gilt: $\overline{AC} = 8 \text{ cm}$; $\overline{MS} = 10 \text{ cm}$. Runden Sie im Folgenden auf zwei Stellen nach dem Komma.	
B 2.1	Zeichnen Sie das Schrägbild der Pyramide ABCDS, wobei die Diagonale [AC] auf der Schrägbildachse und A links von C liegen soll. Für die Zeichnung gilt: q = 0,5; ω = 45°. Berechnen Sie die Länge der Strecke [SC] und das Maß des Winkels ASC. [Ergebnisse: \overline{SC} = 10,77 cm; «ASC = 43,60°]	
	[Figeomsse: SC = 10, 77 cm, 4,ASC = 45,00]	4 P
B 2.2	Parallele Ebenen zur Grundfläche der Pyramide ABCDS schneiden die Kanten der Pyramide ABCDS in den Punkten $A_n \in [AS]$, $B_n \in [BS]$, $C_n \in [CS]$ und	
	$D_n \in [DS]$. Der Punkt $Z \in [MS]$ mit $SZ = 3$ cm ist die Spitze von Pyramiden $A_nB_nC_nD_nZ$, deren Grundflächen die Quadrate $A_nB_nC_nD_n$ sind. Die Winkel A_nZC_n haben das Maß ϕ mit $\phi \in [59,49^\circ; 180^\circ[$. Punkte $M_n \in [MZ]$ sind die Mittelpunkte der Strecken $[A_nC_n]$. Zeichnen Sie die Pyramide $A_1B_1C_1D_1Z$ und den Punkt M_1 für $\phi = 70^\circ$ in die	
	Zeichnung zu B 2.1 ein.	1 P
B 2.3	Bestätigen Sie durch Rechnung die untere Intervallgrenze für φ.	1 P
B 2.4	Bestimmen Sie die Länge der Strecken [SC _n] in Abhängigkeit von φ . $\left[\text{Ergebnis}: \overline{SC_n}(\varphi) = \frac{3 \cdot \sin \frac{\varphi}{2}}{\sin \left(\frac{\varphi}{2} - 21,80^{\circ}\right)} \text{ cm}\right]$	3 P
B 2.5	Zeichnen Sie zusätzlich die Pyramide A ₁ B ₁ C ₁ D ₁ M mit der Grundfläche A ₁ B ₁ C ₁ D ₁ und der Spitze M in die Zeichnung zu B 2.1 ein. Berechnen Sie sodann, um wie viel Prozent das Volumen der Pyramide A ₁ B ₁ C ₁ D ₁ Z mit der Grundfläche A ₁ B ₁ C ₁ D ₁ und der Spitze Z größer ist als das Volumen der Pyramide A ₁ B ₁ C ₁ D ₁ M mit der Grundfläche A ₁ B ₁ C ₁ D ₁ und der Spitze M.	
	[Teilergebnis: $\overline{M_1Z} = 4,00 \text{ cm}$]	4 P
B 2.6	Die Pyramiden A ₂ B ₂ C ₂ D ₂ M und A ₂ B ₂ C ₂ D ₂ Z mit den Spitzen M und Z und der gemeinsamen Grundfläche A ₂ B ₂ C ₂ D ₂ sind volumengleich.	
	Berechnen Sie das zugehörige Winkelmaß φ.	4 P

2.0, 2.1, 2.2, 2.5

2.1

Satz von Pythagoras im Dreieck MSC:

$$MC = AC/2 = 8 \text{ cm}/2 = 4 \text{ cm}$$

SC = 10,77 cm

Im Dreieck MSC gilt:

2.3

φ wird minimal, wenn C₁ mit C zusammenfällt.

Im Dreieck MCZ gilt:

$$MZ = MS - SZ = 10 \text{ cm} - 3 \text{ cm} = 7 \text{ cm}$$

MC 4 cm tan
$$\phi/2 = --- = 0,5714 --> \phi/2 = 29,74^{\circ} --> \phi = 59,48^{\circ}$$
 MZ 7 cm

2.4

In einem beliebigen Dreieck SZC gilt:

$$\beta = 180^{\circ} - \phi/2$$

$$\sin \beta = \sin (180^{\circ} - \phi/2) = \sin \phi/2$$

$$\gamma = 180^{\circ} - a/2 - \beta = 180^{\circ} - a/2 - (180^{\circ} - \phi/2) = \phi/2 - a/2 = \phi/2 - 21,8^{\circ}$$

Sinussatz:

CS ZS
$$----- = ----- | * \sin \beta$$
 $\sin \beta$ $\sin y$

$$CS_{(\phi)} = \frac{ZS * \sin \beta}{\sin \gamma} = \frac{3 cm * \sin \phi/2}{\sin (\phi/2 - 21,8^{\circ})}$$

2.5

Im Dreieck SM₁C₁ gilt:

$$M_1S$$
 $\cos a/2 = ---- | *C_1S$
 C_1S

$$3 \text{ cm} * \cos 21.8^{\circ} * \sin \phi/2$$
 2,79 cm * sin 35°
 $M_1S = C_1S * \cos \alpha/2 = \frac{3 \text{ cm} * \cos 21.8^{\circ} * \sin \phi/2}{\sin (\phi/2 - 21.8^{\circ})}$ sin (35° - 21.8°)

$$M_1S = 7 \text{ cm}$$

$$M_1Z = M_1S - ZS = 7 \text{ cm} - 3 \text{ cm} = 4 \text{ cm}$$

Beide Pyramiden haben die gleiche Grundfläche --> ihr Volumen ändert sich nur mit der Höhe --> Volumina und Höhen stehen im gleichen Verhältnis. $MM_1 = MS - M_1S = 10 \text{ cm} - 7 \text{ cm} = 3 \text{ cm}$

$$V_{A1B1C1D1Z}$$
 M_1Z 4 cm $-----= ----= 1,33 --> V_{A1B1C1D1M}$ MM_1 3 cm

VA1B1C1D1Z ist um 33% größer als VA1B1C1D1M

2.6

Die beiden Pyramiden haben dann das gleiche Volumen, bei gleicher Grundfläche, wenn ihre Höhen gleich sind.

Die Höhe der beiden Pyramiden beträgt $M_2Z/2 = 7$ cm/2 = 3,5 cm.

3,5 =
$$M_2Z = M_2S - 3$$
 cm
3,5 = $\frac{2,79 \text{ cm} * \sin \phi/2}{\sin (\phi/2 - 21,8^\circ)}$
6,5 = $\frac{2,79 \text{ cm} * \sin \phi/2}{\sin (\phi/2 - 21,8^\circ)}$
6,5 * $\sin (\phi/2 - 21,8^\circ)$
6,5 * $\sin (\phi/2 - 21,8^\circ) = 2,79 * \sin \phi/2 | :2,79$
2,33 * $(\sin \phi/2 * \cos 21,8^\circ - \cos \phi/2 * \sin 21,8^\circ) = \sin \phi/2$
2,33 * $(\sin \phi/2 * 0,9285 - \cos \phi/2 * 0,3714) = \sin \phi/2$
2,33 * $\sin \phi/2 - 0,865 * \cos \phi/2 = \sin \phi/2 | :\cos \phi/2$
2,16 * $\tan \phi/2 - 0,865 = \tan \phi/2 | - \tan \phi/2$
1,16 * $\tan \phi/2 - 0,865 = 0 | +0,865$
1,16 * $\tan \phi/2 = 0,865 | :1,16$
 $\tan \phi/2 = 0,7457 --> \phi/2 = 36,71^\circ --> \phi = 73,42^\circ$