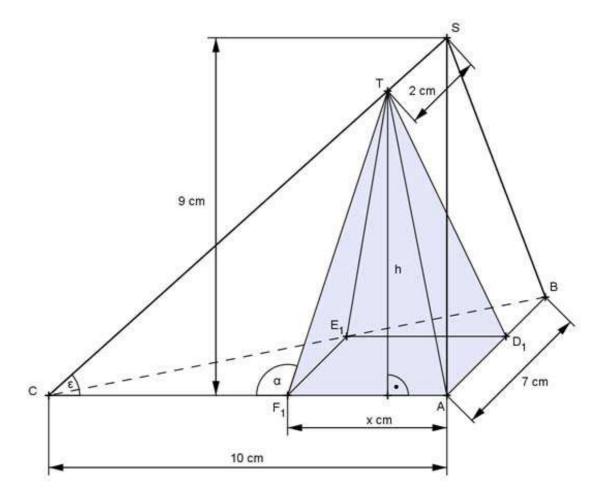
Abschlussprüfung 2016 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik II

	Aufgabe B 2		Haupttermin
B 2.0	Hypotenuse [BC] ist mide ABCS (siehe Sł Die Spitze S liegt sen Es gilt: AC = 10 cm; Runden Sie im Folge	Dreieck ABC mit der die Grundfläche der Pyra- kizze). krecht über dem Punkt A. AB = 7 cm; AS = 9 cm.	S
	dem Komma.	5	
B 2.1		rägbild der Pyramide ABCS, wobei die der Punkt C links vom Punkt A liegen so lt: $q = 0.5$; $\omega = 45^{\circ}$.	88 B2
	Bestimmen Sie sodar	m rechnerisch die Länge der Strecke [C	S] und das Maß ε des
	Winkels ACS. [Erge	bnisse: $\overline{CS} = 13,45 \text{ cm}; \epsilon = 41,99^{\circ}$	4 P
B 2.2	0 < x < 10. Die Pun D _n ∈ [AB] und E _n ∈ Zeichnen Sie das Rec Berechnen Sie sodan ermitteln Sie rechnen	hteck $AD_1E_1F_1$ für $x = 4$ in das Schrägb n die Länge der Strecken $[E_nF_n]$ in Al sch den Wert für x , für den man das Qua	ecken AD _n E _n F _n mit ild zu B 2.1 ein. bhängigkeit von x und
	Ergebnis: $\overline{E}_n F_n(x) =$	= (-0, /x + /) cm	4 P
B 2.3 Berechnen Sie den Flächeninhalt A der Rechtecke A von x. Bestimmen Sie sodann den Wert für x, für den der Flä AD _n E _n F _n maximal wird.		ninhalt der Rechtecke	
D 2 4	Welfaliza	_	2 P
B 2.4	Der Punkt T liegt auf der Strecke [CS] mit $TS = 2 \text{ cm}$. T ist die Spitze von Pyramiden $AD_nE_nF_nT$ mit den Rechtecken $AD_nE_nF_n$ als Grundflächen und der Höhe h. Zeichnen Sie die Pyramide $AD_1E_1F_1T$ und die Höhe h in das Schrägbild zu B 2.1 ein. Zeigen Sie sodann, dass gilt: $h = 7,66 \text{ cm}$.		
B 2.5	Begründen Sie, dass für das Maß α der Winkel TF _n C gilt: α < 138,01°. Berechnen Sie anschließend die untere Intervallgrenze für α.		
	Teilergebnis: AT =	7,80 cm	4 P

2.0, 2.1, 2.2, 2.4



2.1

Satz von Pythagoras im Dreieck CAS:

$$CS^2 = CA^2 + AS^2 = 10^2 + 9^2 = 181 | v$$

CS = 13,45 cm

tan
$$\epsilon$$
 = ---- = 0,9 --> ϵ = 41,99° CA 10 cm

2.2

Strahlensatz:

$$CF = CA - x$$

$$FE_{(x)} = {}^{AB * CF} {}^{AB * (CA - x)} {}^{7 * (10 - x)} = {}^{7 - 0,7x cm} {}^{CA} {}^{CA} {}^{CA} {}^{10}$$

$$AF_0 = F_0E_0$$

$$x = 7 - 0.7x + 0.7x$$

$$1.7x = 7 \mid :1.7$$

x = 4,12 cm

2.3

$$A = x * FE = x * (7 - 0.7x) = 7x - 0.7x^{2}$$

Berechnung der Scheitelpunktkoordinaten:

$$A = 7x - 0.7x^2 \mid :-0.7$$

A ----- = -
$$10 \times + \times^2$$
 - 0.7

A ---- =
$$x^2 - 10x + 25 - 25 - 0.7$$

$$A = -0.7(x - 5)^2 + 17.5$$

Für x = 5 cm ist A maximal und beträgt 17,5 FE.

2.4

Strahlensatz:

$$CT = CS - TS = 13,45 \text{ cm} - 2 \text{ cm} = 11,45 \text{ cm}$$

F nähert sich C --> $a_{max} = 180^{\circ} - \epsilon = 180^{\circ} - 41,99^{\circ} = 138,01^{\circ}$

a_{min} entsteht dann, wenn F mit A zusammenfällt.

Kosinussatz im Dreieck CAT:

AT² = CA² + CT² - 2 * CA * CT * cos
$$\epsilon$$

AT² = 10² + 11,45² - 2 * 10 * 11,45 * cos 41,99° = 60,9 cm² |v

AT = 7,8 cm

Sinussatz:

AT CT
$$=$$
 sin ϵ sin a_{min}

Über Kreuz multipliziert:

AT *
$$\sin a_{min} = CT * \sin \epsilon \mid :AT$$

$$CT * sin \epsilon$$
 11,45 cm * sin 41,99°
 $sin a_{min} = ---- = 0,9821 --> a_{min} = 79,14°$ AT 7,8 cm