Prüfungsdauer:
150 Minuten

Mathematik I

A 2.0 Der Punkt A(2|-1) ist gemeins
Die Diagonalenschnittpunkte M
auf der Geraden g mit der
Drachenvierecke AB_nC_nD_n gilt:

Abschlussprüfung 2007 an den Realschulen in Bayern

R4/R6

4 P

in our reconcurrent in Dayer.

Mathematik I Haupttermin Aufgabe A 2

- A 2.0 Der Punkt A(2|-1) ist gemeinsamer Eckpunkt von Drachenvierecken AB_nC_nD_n.

 Die Diagonalenschnittpunkte M_n(x|2x+3) der Drachenvierecke AB_nC_nD_n liegen auf der Geraden g mit der Gleichung y=2x+3 (G=IR×IR). Für die Drachenvierecke AB_nC_nD_n gilt:

 AM_n: M_nC_n = 2:1 und S D_nC_nB_n = 90°.
- A 2.1 Zeichnen Sie die Gerade g und die Drachenvierecke AB₁C₁D₁ mit M₁(-4 | y₁) und AB₂C₂D₂ mit M₂(2 | y₂) in ein Koordinatensystem.

Für die Zeichnung: Längeneinheit 1 cm; $-8 \le x \le 7$; $-9 \le y \le 12$ 3 p

- A 2.2 Alle Winkel B_nAD_n haben das gleiche Maß α.

 Berechnen Sie das Maß α auf zwei Stellen nach dem Komma gerundet.

 2 P
- A 2.3 Ermitteln Sie rechnerisch die Koordinaten der Punkte B_n der Drachenvierecke AB_nC_nD_n in Abhängigkeit von der Abszisse x der Punkte M_n.
 [Ergebnis: B_n (2x+2|1,5x+4)]

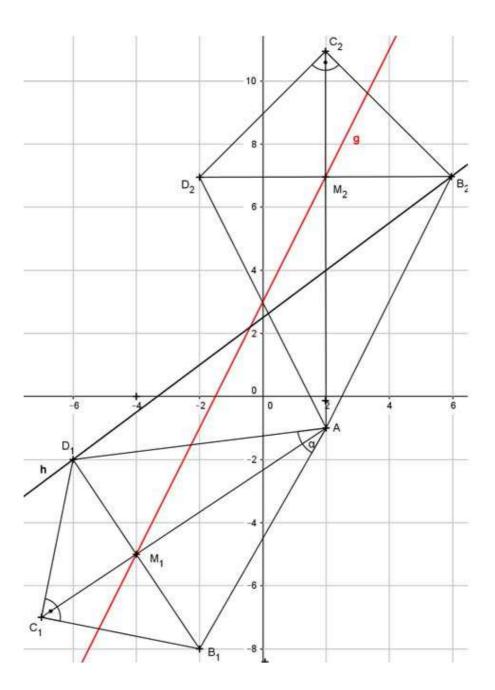
A 2.4 Bestimmen Sie die Gleichung des Trägergraphen h der Punkte B_n und zeichnen Sie sodann den Trägergraphen h in das Koordinatensystem zu 2.1 ein. 3 P

A 2.5 Das Drachenviereck AB₃C₃D₃ hat unter den Drachenvierecken AB_nC_nD_n den kleinstmöglichen Flächeninhalt.

Berechnen Sie die Koordinaten des zugehörigen Diagonalenschnittpunkts M₃ und geben Sie den minimalen Flächeninhalt an.

5 P

2.0, 2.1



2.2

Die Punkte C liegen in der Verlängerung der Strecken AM auf dem Thaleskreis über den Strecken DB. Dreiecke CBM sind gleichschenklig mit BC als Grundseite ---> Die Strecken MC und MB sind gleich lang. MC = MB = 0.5 * AM

In einem beliebigen Dreieck AMB gilt:

2.3

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$$

$$\overrightarrow{AM} = \overrightarrow{OM} - \overrightarrow{OA} = \begin{bmatrix} x \\ 2x+3 \end{bmatrix} - \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} x-2 \\ 2x+4 \end{bmatrix}$$

MB entsteht, indem AM um 90° im Uhrzeigersinn gedreht und um den Faktor 0,5 verkleinert wird.

$$\overrightarrow{MB} = 0.5* \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} * \begin{bmatrix} x-2 \\ 2x+4 \end{bmatrix} = 0.5* \begin{bmatrix} 2x+4 \\ 2-x \end{bmatrix} = \begin{bmatrix} x+2 \\ 1-0.5x \end{bmatrix}$$

$$\overrightarrow{AB} = \overrightarrow{AM} + \overrightarrow{MB} = \begin{bmatrix} x-2 \\ 2x+4 \end{bmatrix} + \begin{bmatrix} x+2 \\ 1-0,5x \end{bmatrix} = \begin{bmatrix} 2x \\ 1,5x+5 \end{bmatrix}$$

$$\overrightarrow{OB} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 2x \\ 1,5x+5 \end{bmatrix} = \begin{bmatrix} 2x+2 \\ 1,5x+4 \end{bmatrix}$$

2.4

Die x'-Koordinate des Trägergraphen h entspricht der x-Koordinate der Punkte B.

$$x' = 2x + 2 \mid -2$$

$$x' - 2 = 2x | :2$$

In die y-Koordinate des Punktes B eingesetzt:

$$x' - 2$$

 $y' = 1,5 * (------) + 4 = 0,75x - 1,5 + 4 = 0,75x + 2,5$

2.5

Der Flächeninhalt der Dreiecke ADB ist doppelt so groß wie der der Dreiecke AMB, weil bei gleicher Grundseite BD die Höhe doppelt so groß ist.:

Berechnung mit einer Determinante aus den Vektoren \overrightarrow{MB} und \overrightarrow{MC} :

$$\overrightarrow{MC} = 0.5 * \overrightarrow{AM} = 0.5 * \begin{bmatrix} x-2 \\ 2x+4 \end{bmatrix} = \begin{bmatrix} 0.5x-1 \\ x+2 \end{bmatrix}$$

$$A_{DBC} = 2 * 0.5 * \begin{bmatrix} 2 + x & 0.5x - 1 \\ 1 - 0.5x & x + 2 \end{bmatrix}$$

$$A_{DBC} = (2 + x) * (x + 2) - (0.5x - 1) * (1 - 0.5x)$$

$$A_{DBC} = 4 + 4x + x^2 - (-0.25x^2 + x - 1)$$

$$A_{DBC} = 1,25x^2 + 3x + 5$$

$$A_{Drachen} = 2.5x^2 + 6x + 10 + 1.25x^2 + 3x + 5$$

$$A_{Drachen} = 3,75x^2 + 9x + 15$$

Berechnung des Scheitelpunktes:

$$A_{Drachen} = 3,75x^2 + 9x + 15 \mid :3,75$$

A_{Drachen}
$$---- = x^2 + 2,4x + 4$$
 3,75

$$A_{Drachen}$$
 ----- = $(x + 1,2)^2 - 1,44 + 4$ 3,75

A_{Drachen}
---- =
$$(x + 1,2)^2 + 2,56 \mid *3,75$$
3.75

$$A_{Drachen} = 3,75(x + 1,2)^2 + 9,6$$

Für x = -1,2 hat der Drachen den **minimalen Flächeninhalt von 9,6 FE.**

Koordinaten von
$$M_3(-1,2|2*(-1,2)+3=0,6)=(-1,2|0,6)$$